Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biomater Sci ; 12(2): 479-494, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38090986

RESUMO

Cartilage defects can be difficult to heal, potentially leading to complications such as osteoarthritis. Recently, a tissue engineering approach that uses scaffolds and growth factors has been proposed to regenerate new cartilage tissues. Herein, we investigated the application of hyaluronic acid (HA) gel loaded with transforming growth factor-beta 3 (TGF-ß3) for enhanced cartilage regeneration. We assessed the clinical conditions required to efficiently enhance the ability of the modified HA gel to repair defective cartilage. Based on our findings, the prepared HA gel exhibited good physicochemical and mechanical properties and was non-toxic and non-inflammatory. Moreover, HA gel-loaded TGF-ß3 (HAT) had improved biocompatibility and promoted the synthesis of cartilage-specific matrix and collagen, further improving its ability to repair defects. The application of HAT resulted in an initial burst release of HA, which degraded slowly in vivo. Finally, HAT combined with microfracture-inducing bone marrow stem cells could significantly improve the cartilage microenvironment and regeneration of cartilage defects. Our results indicate that HA is a suitable material for developing growth factor carriers, whereas HAT is a promising candidate for cartilage regeneration. Furthermore, this differentiated strategy provides a rapid and effective clinical approach for next-generation cartilage regeneration.


Assuntos
Ácido Hialurônico , Células-Tronco Mesenquimais , Ácido Hialurônico/química , Fator de Crescimento Transformador beta3/química , Hidrogéis/química , Cartilagem/metabolismo , Fatores de Crescimento Transformadores/metabolismo , Fatores de Crescimento Transformadores/farmacologia
2.
Molecules ; 28(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37446884

RESUMO

Hydrogel is a versatile material that can be manipulated to achieve the desired physicochemical properties, such as stiffness, pore size, and viscoelasticity. Traditionally, these properties have been controlled through parameters such as concentration and pH adjustments. In this study, we focused on exploring the potential of hydrolyzed silk fibroin (HSF) as a molecular weight-modulating agent to control the physicochemical properties of double-composite hydrogels. We developed a synergistic dual-crosslinked hydrogel by combining ionically crosslinked silk fibroin with gellan gum (GG). The hydrolysis of silk fibroin not only enhanced its hydrophilicity but also enabled adjustments in its mechanical properties, including the pore size, initial modulus elasticity, and relaxation time. Moreover, biocompatibility assessments based on cell viability tests confirmed the potential of these hydrogels as biocompatible materials. By highlighting the significance of developing an HSF/GG dual-crosslinked hydrogel, this study contributes to the advancement of novel double-composite hydrogels with remarkable biocompatibility. Overall, our findings demonstrate the capability of controlling the mechanical properties of hydrogels through molecular weight modulation via hydrolysis and highlight the development of a biocompatible HSF/GG dual-crosslinked hydrogel with potential biomedical applications.


Assuntos
Fibroínas , Engenharia Tecidual , Fibroínas/química , Hidrogéis/farmacologia , Hidrogéis/química , Hidrólise , Peso Molecular , Seda/química
3.
ACS Omega ; 8(7): 6455-6462, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844585

RESUMO

Shape-memory polymers (SMPs) can be defined as a reversibly changing form through deformation and recovery by external stimuli. However, there remain application limitations of SMPs, such as complicated preparation processes and slow shape recovery. Here, we designed gelatin-based shape-memory scaffolds by a facile dipping method in tannic acid solution. The shape-memory effect of scaffolds was attributed to the hydrogen bond between gelatin and tannic acid, which acts as the net point. Moreover, gelatin (Gel)/oxidized gellan gum (OGG)/calcium chloride (Ca) was intended to induce faster and more stable shape-memory behavior through the introduction of a Schiff base reaction. The chemical, morphological, physicochemical, and mechanical properties of the fabricated scaffolds were evaluated, and those results showed that the Gel/OGG/Ca had improved mechanical properties and structural stability compared with other scaffold groups. Additionally, Gel/OGG/Ca exhibited excellent shape-recovery behavior of 95.8% at 37 °C. As a consequence, the proposed scaffolds can be fixed to the temporary shape at 25 °C in just 1 s and recovered to the original shape at 37 °C within 30 s, implying a great potential for minimally invasive implantation.

4.
ACS Omega ; 7(45): 41331-41340, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406493

RESUMO

The damage to retinal pigment epithelium (RPE) cells can lead to vision loss and permanent blindness. Therefore, an effective therapeutic strategy has emerged to replace damaged cells through RPE cell delivery. In this study, we fabricated injectable gellan gum (GG)/silk sericin (SS) hydrogels as a cell carrier by blending GG and SS. To determine the appropriate concentration of SS for human RPE ARPE-19, 0, 0.05, 0.1, and 0.5% (w/v) of SS solution were blended in 1% (w/v) GG solution (GG/SS 0%, GG/SS 0.05%, GG/SS 0.1%, and GG/SS 0.5%, respectively). The physical and chemical properties were measured through Fourier-transform infrared spectroscopy, scanning electron microscopy, mass swelling, and weight loss. Also, viscosity, injection force, and compressive tests were used to evaluate mechanical characteristics. Cell proliferation and differentiation of ARPE-19 were evaluated using quantitative dsDNA analysis and real-time polymerase chain reaction, respectively. The addition of SS gave GG/SS hydrogels a compressive strength similar to that of natural RPE tissue, which may well support the growth of RPE and enhance cell proliferation and differentiation. In particular, the GG/SS 0.5% hydrogel showed the most similar compressive strength (about 10 kPa) and exhibited the highest gene expression related to ARPE-19 cell proliferation. These results indicate that GG/SS 0.5% hydrogels can be a promising biomaterial for cell delivery in retina tissue engineering.

5.
Biomacromolecules ; 23(11): 4860-4871, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36206115

RESUMO

Polyrotaxanes (PRXs) containing acetylated α-cyclodextrins exhibit a temperature-dependent phase transition in aqueous solutions across their lower critical solution temperature (LCST) of approximately 26.6 °C. To gain insights into the interactions of acetylated PRXs (Ac-PRXs) with biological components, thermoresponsive supramolecular surfaces were prepared by coating tissue culture polystyrene (TCPS) surfaces with Ac-PRX triblock copolymers, and their surface properties across the LCST were evaluated. The wettability and protein adsorption of Ac-PRX-coated surfaces changed significantly between 10 and 37 °C, whereas the uncoated TCPS and unmodified PRX-coated surfaces did not alter the wettability and protein adsorption at 10 and 37 °C. The adhesion, proliferation, morphology, and adhesion strength of NIH/3T3 cells on Ac-PRX-coated surfaces were found to be similar to those of the uncoated and unmodified PRX-coated surfaces. However, the adhesion strength of NIH/3T3 cells on Ac-PRX-coated surfaces decreased drastically at 10 °C. Consequently, the cells spontaneously detached from the Ac-PRX-coated surfaces without enzymatic treatment. Additionally, when incubating confluent cells at 10 °C, the cells detached from Ac-PRX-coated surfaces as cell sheets while retaining extracellular matrix proteins. The findings of this study provide new directions for the design of thermoresponsive supramolecular biointerfaces for applications in bioseparation and cell manipulation.


Assuntos
Rotaxanos , Animais , Camundongos , Adesão Celular , Poloxâmero , Polímeros/farmacologia , Propriedades de Superfície
6.
ACS Biomater Sci Eng ; 8(6): 2463-2476, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35536230

RESUMO

ß-Cyclodextrins (ß-CDs) and ß-CD-containing polymers have attracted considerable attention as potential candidates for the treatment of cholesterol-related metabolic and intractable diseases. We have advocated the use of ß-CD-threaded acid-degradable polyrotaxanes (PRXs) as intracellular delivery carriers for ß-CDs. As unmodified PRXs are insoluble in aqueous solutions, chemical modification of PRXs is an essential process to improve their solubility and impart novel functionalities. In this study, we investigated the effect of the modification of zwitterionic sulfobetaines on PRXs due to their excellent solubility, biocompatibility, and bioinert properties. Sulfobetaine-modified PRXs were synthesized by converting the tertiary amino groups of precursor 2-(N,N-dimethylamino)ethyl carbamate-modified PRXs (DMAE-PRXs) using 1,3-propanesultone. The resulting sulfobetaine-modified PRXs showed high solubility in aqueous solutions and no cytotoxicity, while their intracellular uptake levels were low. To further improve this system, we designed PRXs cografted with zwitterionic sulfobetaine and cationic DMAE groups via partial betainization of the DMAE groups. Consequently, the interaction with proteins, intracellular uptake levels, and liver accumulation of partly betainized PRXs were found to be higher than those of completely betainized PRXs. Additionally, partly betainized PRXs showed no toxicity in vitro or in vivo despite the presence of residual cationic DMAE groups. Furthermore, partly betainized PRXs ameliorated the abnormal free cholesterol accumulation in Niemann-Pick type C disease patient-derived cells at lower concentrations than ß-CD derivatives and previously designed PRXs. Overall, the cografting of sulfobetaines and amines on PRXs is a promising chemical modification for therapeutic applications due to the high cholesterol-reducing ability and biocompatibility of such modified PRXs. In addition, modification with both zwitterionic and cationic groups can be used for the design of various polymeric materials exhibiting both bioinert and bioactive characteristics.


Assuntos
Rotaxanos , beta-Ciclodextrinas , Aminas , Betaína/análogos & derivados , Cátions , Colesterol/metabolismo , Humanos , Rotaxanos/química , Rotaxanos/metabolismo , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
7.
ACS Biomater Sci Eng ; 8(2): 588-597, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-34994537

RESUMO

To improve the mechanical properties of collagen hydrogels, which are widely utilized as biomaterials, post-cross-linking of collagen hydrogels was performed using polyrotaxane (PRX) as a cross-linker. Herein, carboxymethyl group-modified PRXs (CMPRs) composed of carboxymethylated α-cyclodextrins (α-CDs) threaded along poly(ethylene glycol) (PEG) capped with bulky stoppers were used to cross-link via reaction with the amino groups in the collagen. Four series of CMPRs with different α-CD threading ratios and axle PEG molecular weights were used for the post-cross-linking of the collagen hydrogels to verify the optimal CMPR chemical compositions. The post-cross-linking of the collagen hydrogels with CMPRs improved the swelling ratios and mechanical properties, such as viscoelasticity and tensile strength. Among the tested CMPRs, CMPRs with an axle PEG molecular weight of 35,000 (PEG35k) resulted in better mechanical properties than CMPRs with a PEG10k axis. Additionally, the cell adhesion and proliferation were greatly improved on the surface of the collagen hydrogels post-cross-linked with CMPRs with the PEG35k axle. These findings suggest that the molecular weight of an axle polymer in CMPRs is a more important parameter than the α-CD threading ratios. Accordingly, the post-cross-linking of hydrogels with PRXs is promising for improving the mechanical properties and biomaterial functions of collagen hydrogels.


Assuntos
Rotaxanos , Proliferação de Células , Colágeno/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Rotaxanos/química , Rotaxanos/metabolismo , Rotaxanos/farmacologia
8.
J Mater Chem B ; 8(32): 7288, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32729607

RESUMO

Correction for 'An antibody-supermolecule conjugate for tumor-specific targeting of tumoricidal methylated ß-cyclodextrin-threaded polyrotaxanes' by Kei Nishida et al., J. Mater. Chem. B, 2020, DOI: 10.1039/d0tb00575d.

9.
J Mater Chem B ; 8(31): 6975-6987, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32573639

RESUMO

We previously found that acid-labile polyrotaxane containing methylated ß-cyclodextrin (Me-PRX) induces endoplasmic reticulum (ER) stress-related autophagy and autophagic cell death. Me-PRX-induced autophagic cell death occurs even in apoptosis-resistant cells; tumor-targeted Me-PRX delivery could thus be an effective cancer treatment approach. In this study, antibody-supermolecule conjugates, consisting of a tumor-specific antibody and Me-PRX, were designed to achieve a tumor-specific delivery of Me-PRX. Trastuzumab, a monoclonal antibody against HER2 expressed in various malignant tumors, was selected as a tumor-targeting antibody, and phenyl maleimide group-modified Me-PRX (Mal-Me-PRX) was conjugated to the cysteine residue of the reduced Trastuzumab to obtain a Trastuzumab-Me-PRX conjugate (Tras-Me-PRX). The cellular association of Tras-Me-PRX to HER2-expressing tumor cells was remarkably greater than that of unmodified Me-PRX. Moreover, Tras-Me-PRX effectively reduced the viability of HER2-expressing tumor cells at a lower concentration compared to the unmodified Me-PRX. In conclusion, antibody-Me-PRX conjugates are regarded as a new class of antibody-drug conjugates that would contribute to the chemotherapy of cancers.


Assuntos
Ciclodextrinas/química , Imunoconjugados/química , Imunoconjugados/uso terapêutico , Terapia de Alvo Molecular , Poloxâmero/química , Rotaxanos/química , Trastuzumab/química , beta-Ciclodextrinas/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Humanos , Imunoconjugados/metabolismo , Metilação
10.
Polymers (Basel) ; 11(12)2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31847323

RESUMO

The cytocompatibility of biological and synthetic materials is an important issue for biomaterials. Gelatin hydrogels are used as biomaterials because of their biodegradability. We have previously reported that the mechanical properties of gelatin hydrogels are improved by cross-linking with polyrotaxanes, a supramolecular compound composed of many cyclic molecules threaded with a linear polymer. In this study, the ability of gelatin hydrogels cross-linked by polyrotaxanes (polyrotaxane-gelatin hydrogels) for cell cultivation was investigated. Because the amount of polyrotaxanes used for gelatin fabrication is very small, the chemical composition was barely altered. The structure and wettability of these hydrogels are also the same as those of conventional hydrogels. Fibroblasts adhered on polyrotaxane-gelatin hydrogels and conventional hydrogels without any reduction or apoptosis of adherent cells. From these results, the polyrotaxane-gelatin hydrogels have the potential to improve the mechanical properties of gelatin without affecting cytocompatibility. Interestingly, when cells were cultured on polyrotaxane-gelatin hydrogels after repeated stress deformation, the cells were spontaneously oriented to the stretching direction. This cellular response was not observed on conventional hydrogels. These results suggest that the use of a polyrotaxane cross-linking agent can not only improve the strength of hydrogels but can also contribute to controlling reorientation of the gelatin.

11.
Mater Sci Eng C Mater Biol Appl ; 103: 109853, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31349513

RESUMO

We have designed and characterized an injectable, electrostatically bonded, in situ-forming hydrogel system consisting of a cationic polyelectrolyte [(methoxy)polyethylene glycol-b-(poly(ε-caprolactone)-ran-poly(L-lactic acid)] (MP) copolymer derivatized with an amine group (MP-NH2) and anionic BMP2. To the best of our knowledge, there have been hardly any studies that have investigated electrostatically bonded, in situ-forming hydrogel systems consisting of MP-NH2 and BMP2, with respect to how they promote in vivo osteogenic differentiation of human turbinate mesenchymal stem cells (hTMSCs). Injectable formulations almost immediately formed an electrostatically loaded hydrogel depot containing BMP2, upon injection into mice. The hydrogel features and stability of BMP2 inside the hydrogel were significantly affected by the electrostatic attraction between BMP2 and MP-NH2. Additionally, the time BMP2 spent inside the hydrogel depot was prolonged in vivo, as evidenced by in vivo near-infrared fluorescence imaging. Biocompatibility was demonstrated by the fact that hTMSCs survived in vivo, even after 8 weeks and even though relatively few macrophages were in the hydrogel depot. The osteogenic capacity of the electrostatically loaded hydrogel implants containing BMP2 was higher than that of a hydrogel that was simply loaded with BMP2, as evidenced by Alizarin Red S, von Kossa, and hematoxylin and eosin staining as well as osteonectin, osteopontin, osteocalcin, and type 1α collagen mRNA expression. The results confirmed that our injectable, in situ-forming hydrogel system, electrostatically loaded with BMP2, can enhance in vivo osteogenic differentiation of hTMSCs.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Hidrogéis , Células-Tronco Mesenquimais/metabolismo , Osteogênese/efeitos dos fármacos , Conchas Nasais/metabolismo , Adulto , Animais , Feminino , Xenoenxertos , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Camundongos , Eletricidade Estática , Transplante de Células-Tronco , Conchas Nasais/citologia
12.
Polymers (Basel) ; 11(2)2019 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-30960232

RESUMO

In this paper, a cartilage acellular-matrix (CAM) is chosen as a biomaterial for an effective antiadhesive barrier to apply between injured tissue and healthy tissues or organs. CAM is cross-linked using glutaraldehyde to create a cross-linked CAM (Cx-CAM) film. Cx-CAM has higher elastic modulus and toughness and more hydrophobic surface properties than CAM before cross-linking. Small intestinal submucosa (SIS), cross-linked SIS (Cx-SIS) as a negative control, and Seprafilm as a positive control are used in an experiment as adhesion barriers. Human umbilical vein endothelial cells (HUVECs) on SIS, Cx-SIS, or in a culture plate get attached and effectively proliferate for 7 days, but Cx-CAM and Seprafilm allow for little or no attachment and proliferation of HUVECs, thus manifesting antiadhesive and antiproliferative effects. In animals with surgical damage to the peritoneal wall and cecum, Cx-CAM and Seprafilm afford little adhesion and negligible inflammation after seven days, as confirmed by hematoxylin and eosin staining and macrophage staining, in contrast to an untreated-injury model, SIS, or Cx-SIS film. Cx-CAM significantly suppresses the formation of blood vessels between the peritoneal wall and cecum, as confirmed by CD31 staining. Overall, the newly designed Cx-CAM film works well as an antiadhesion barrier and has better anti-tissue adhesion efficiency.

13.
Acta Biomater ; 74: 192-206, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29793074

RESUMO

In this work, we chose cartilage acellular matrix (CAM) as a promising antiadhesive material because CAM effectively inhibits the formation of blood vessels, and we used electrospinning to prepare antiadhesive barriers. Additionally, we synthesized N-hydroxysuccinimide (NHS)-poly(caprolactone-co-lactide-co-glycolide)-NHS (MP) copolymers (to tune degradation) as a cross-linking agent for CAM. This is the first report on the development of electrospun cross-linked (Cx) CAM/MP (CA/P) nanofiber (NF) (Cx-CA/P-NF) with a tunable degradation period as an antiadhesive barrier. Compared with the CA/P-NF before cross-linking, the electrospun Cx-CA/P-NF after cross-linking showed different biodegradation. Cx-CA/P-NF significantly inhibited the in vitro attachment and proliferation of human umbilical vein endothelial cells (HUVECs), as confirmed by an MTT assay and scanning electron microscopy images. Cx-CA/P-NFs implanted between a surgically damaged peritoneal wall and cecum gradually degraded in 7 days; this process was monitored by NIR imaging. The in vivo evaluation of the anti-tissue adhesive effect of Cx-CA/P-NFs revealed little adhesion, few blood vessels, and negligible inflammation at 7 days determined by hematoxylin and eosin staining. ED1 staining of Cx-CA/P-NFs showed infiltration of few macrophages because of the inflammatory response to the Cx-CA/P-NF as compared with an untreated injury model. Additionally, Cx-CA/P-NFs significantly suppressed the formation of blood vessels between the peritoneal wall and cecum, according to CD31 staining. Overall, Cx-CA/P-NFs yielded little adhesion, infiltration by macrophages, or formation of blood vessels in a postoperative antiadhesion assay. Thus, it is reasonable to conclude that the Cx-CA/P-NF designed herein successfully works as an antiadhesive barrier with a tunable degradation period. STATEMENT OF SIGNIFICANCE: The cartilage acellular matrix (CAM) can inhibit the formation of fibrous tissue bridges and blood vessels between the tissue at an injured site and the surrounding healthy tissues. However, CAM has not been rigorously investigated as an antiadhesive barrier. In this manuscript, the cross-linked CAM nanofiber (Cx-CA/P-NF) designed herein successfully works as an antiadhesive barrier. Cx-CA/P-NFs yielded little adhesion, infiltration by macrophages, or formation of blood vessels in a postoperative antiadhesion assay. Moreover, we demonstrated the suitable properties of Cx-CA/P-NF such as easy cross-linking by maintaining the antiadhesive properties, controllable biodegradation, and in vivo antiadhesive effect of Cx-CA/P-NF.


Assuntos
Matriz Extracelular/química , Nanofibras , Poliésteres , Aderências Teciduais/prevenção & controle , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Nanofibras/química , Nanofibras/uso terapêutico , Poliésteres/química , Poliésteres/farmacologia , Ratos , Ratos Sprague-Dawley , Aderências Teciduais/metabolismo , Aderências Teciduais/patologia
14.
Tissue Eng Regen Med ; 15(5): 513-520, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30603575

RESUMO

BACKGROUND: Several injectable hydrogels have been developed extensively for a broad range of biomedical applications. Injectable hydrogels forming in situ through the change in external stimuli have the distinct properties of easy management and minimal invasiveness, and thus provide the advantage of bypassing surgical procedures for administration resulting in better patient compliance. METHODS: The injectable in situ-forming hydrogels can be formed irreversibly or reversibly under physiological stimuli. Among several external stimuli that induce formation of hydrogels in situ, in this review, we focused on the electrostatic interactions as the most simple and interesting stimulus. RESULTS: Currently, numerous polyelectrolytes have been reported as potential electrostatically interactive in situ-forming hydrogels. In this review, a comprehensive overview of the rapidly developing electrostatically interactive in situ-forming hydrogels, which are produced by various anionic and cationic polyelectrolytes such as chitosan, celluloses, and alginates, has been outlined and summarized. Further, their biomedical applications have also been discussed. CONCLUSION: The review concludes with perspectives on the future of electrostatically interactive in situ-forming hydrogels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...